Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126688

ABSTRACT

Chromosomal inversions have been identified in many natural populations and can be responsible for novel traits and rapid adaptation. In zebra finch, a large region on the Z chromosome has been subject to multiple inversions, which have pleiotropic effects on multiple traits but especially on sperm phenotypes, such as midpiece and flagellum length. To understand the effect, the Z inversion has on these traits, we examined testis and liver transcriptomes of young males at different maturation times. We compared gene expression differences among three inversion karyotypes: AA, B*B* and AB*, where B* denotes the inverted regions on Z with respect to A. In testis, 794 differentially expressed genes were found and most of them were located on chromosome Z. They were functionally enriched for sperm-related traits. We also identified clusters of co-expressed genes that matched with the inversion-related sperm phenotypes. In liver, there were some enriched functions and some overrepresentation on chromosome Z with similar location as in testis. In both tissues, the overrepresented genes were located near the distal end of Z but also in the middle of the chromosome. For the heterokaryotype, we observed several genes with one allele being dominantly expressed, similar to expression patterns in one or the other homokaryotype. This was confirmed with SNPs for three genes, and interestingly one gene, DMGDH, had allele-specific expression originating mainly from one inversion haplotype in the testis, yet both inversion haplotypes were expressed equally in the liver. This karyotype-specific difference in tissue-specific expression suggests a pleiotropic effect of the inversion and thus suggests a mechanism for divergent phenotypic effects resulting from an inversion.

2.
Evolution ; 77(11): 2352-2364, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37624670

ABSTRACT

When populations become geographically isolated, they begin to diverge in various traits and at variable rates. The dynamics of such trait divergences are relevant for understanding evolutionary processes such as local adaptation and speciation. Here we examine divergences in sperm and body structures in a polygynandrous songbird, the alpine accentor (Prunella collaris) between two allopatric high-altitude populations, in Morocco and Spain. The populations diverged around 82,000 years ago, as estimated with a coalescence-based phylogenetic analysis of genome-wide single-nucleotide polymorphisms. We found that birds in the two areas had nonoverlapping sperm lengths, which suggests adaptation to divergent female reproductive tract environments. Sperm length also showed an exceptionally low coefficient of among-male variation, a signal of strong stabilizing selection imposed by sperm competition. The evolutionary rate of sperm length was almost twice the rates for the most divergent morphological traits and more than three times higher than expected from literature data over a similar generational timescale. This rapid evolution of a key reproductive trait has implications for reproductive isolation and ultimately for speciation. Strong selection for different sperm length optima in allopatry predicts conspecific sperm precedence and disruptive selection in sympatry, hence a possible postcopulatory prezygotic barrier to gene flow.


Subject(s)
Semen , Songbirds , Animals , Male , Female , Phylogeny , Spermatozoa , Reproduction , Songbirds/genetics , Genetic Speciation
3.
J Evol Biol ; 36(1): 131-143, 2023 01.
Article in English | MEDLINE | ID: mdl-36357998

ABSTRACT

Sperm cells are exceptionally morphologically diverse across taxa. However, morphology can be quite uniform within species, particularly for species where females copulate with many males per reproductive bout. Strong sexual selection in these promiscuous species is widely hypothesized to reduce intraspecific sperm variation. Conversely, we hypothesize that intraspecific sperm size variation may be maintained by high among-female variation in the size of sperm storage organs, assuming that paternity success improves when sperm are compatible in size with the sperm storage organ. We use individual-based simulations and an analytical model to evaluate how selection on sperm size depends on promiscuity level and variation in sperm storage organ size (hereafter, female preference variation). Simulations of high promiscuity (10 mates per female) showed stabilizing selection on sperm when female preference variation was low, and disruptive selection when female preference variation was high, consistent with the analytical model results. With low promiscuity (2-3 mates per female), selection on sperm was stabilizing for all levels of female preference variation in the simulations, contrasting with the analytical model. Promiscuity level, or mate sampling, thus has a strong impact on the selection resulting from female preferences. Furthermore, when promiscuity is low, disruptive selection on male traits will occur under much more limited circumstances (i.e. only with higher among-female variation) than many previous models suggest. Variation in female sperm storage organs likely has strong implications for intraspecific sperm variation in highly promiscuous species, but likely does not explain differences in intraspecific sperm variation for less promiscuous taxa.


Subject(s)
Mating Preference, Animal , Sexual Behavior, Animal , Animals , Male , Female , Sexual Behavior, Animal/physiology , Semen , Spermatozoa/physiology , Reproduction/physiology , Phenotype
4.
J Morphol ; 283(12): 1577-1589, 2022 12.
Article in English | MEDLINE | ID: mdl-36260518

ABSTRACT

In contrast to numerous studies on spermatozoa length, relatively little work focuses on the width of spermatozoa, and particularly the width of the midpiece and flagellum. In flagellated spermatozoa, the flagellum provides forward thrust while energy may be provided via mitochondria in the midpiece and/or through glycolysis along the flagellum itself. Longer flagella may be able to provide greater thrust but may also require stronger structural features and more or larger mitochondria to supply sufficient energy. Here, we use scanning electron microscopy to investigate the ultrastructure of spermatozoa from 55 passerine species in 26 taxonomic families in the Passerides infraorder. Our data confirm the qualitative observation that the flagellum tapers along its length, and we show that longer flagella are wider at the neck. This pattern is similar to mammals, and likely reflects the need for longer cells to be stronger against shearing forces. We further estimate the volume of the mitochondrial helix and show that it correlates well with midpiece length, supporting the use of midpiece length as a proxy for mitochondrial volume, at least in between-species studies where midpiece length is highly variable. These results provide important context for understanding the evolutionary correlations among different sperm cell components and dimensions.


Subject(s)
Songbirds , Male , Animals , Semen , Spermatozoa/ultrastructure , Flagella/ultrastructure , Microscopy, Electron, Scanning , Mammals
5.
Zootaxa ; 5150(4): 451-486, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-36095651

ABSTRACT

A list of all known bird type specimens in the collection of the Natural History Museum, University of Oslo, Norway is presented. The specimens originate from northern Australia, eastern Indonesia or Tristan da Cunha, and have either been collected and described by personnel associated with the museum or sent from other museums in exchange for other specimens. The catalogue is not intended as a taxonomic revision of the treated taxa, and consequently no taxonomic revisions are made, but the type status of some specimens formerly considered to be types is refuted. The collection holds name-bearing types of 11 taxa, comprising one holotype and 26 syntypes; two paratypes from the same type series as the holotype; and one paralectotype of a twelfth taxon. The catalogue also includes two specimens of one taxon here refuted as being type specimens.


Subject(s)
Museums , Natural History , Animals , Birds , Norway
7.
Evolution ; 76(9): 2199-2203, 2022 09.
Article in English | MEDLINE | ID: mdl-35554925

ABSTRACT

Safran et al. (2016a) manipulated two sexual traits (ventral plumage coloration and tail streamer length) in male barn swallows (Hirundo rustica) and reported divergent effects on paternity change between two study populations, in Colorado and Israel. They concluded that geographical variation in the two phenotypic traits is maintained by divergent sexual selection. However, the response variable they used, the longitudinal change in paternity from a pre-treatment clutch to a post-treatment clutch, does not reflect an unbiased effect of the treatment. Here, I show that the magnitude of the change in paternity is influenced by variation in the initial paternity score among the treatment groups, which is presumably due to stochastic variation from low sample sizes in the treatment groups. When the bias was accounted for in re-analyses of the Israeli dataset, the statistical significance of one of two treatment effects disappeared. Similar re-analyses of the American population were not possible due to inaccessibility of raw data for individual clutches, but an assessment of the mean scores indicates that the two significant treatment effects in this population were similarly biased in their initial paternity scores. The conclusion of divergent sexual selection on male phenotypic traits between the two populations does not seem to be supported.


Subject(s)
Swallows , Animals , Colorado , Geography , Male , Phenotype , Sexual Selection , Swallows/physiology
8.
Behav Ecol Sociobiol ; 76(5): 61, 2022.
Article in English | MEDLINE | ID: mdl-35535127

ABSTRACT

Abstract: In birds with extrapair mating, older males usually have higher fertilization success than younger males. Two hypotheses can potentially explain this pattern: 1) females prefer older, and often more ornamented males, or 2) older males invest more in reproduction and fertility than younger males. Here we studied factors associated with age-related male fertilization success in a population of barn swallows Hirundo rustica in Canada. We document that male fertilization success increased gradually up to a minimum age of four-year old. The age effect was especially strong for the number of extrapair offspring obtained and the occurrence of a second brood. The higher fertilization success of older males was also associated with an early start of breeding in spring. The length of the elongated outermost tail feathers, a postulated male ornament preferred by females, also increased with age (in both sexes), but it was not a significant predictor of male fertilization success within age classes. Male fertility traits, especially testis size, but also sperm motility and sperm velocity, increased significantly across age groups. Our results suggest that the higher fertilization success by older males is due to their higher reproductive investments and that their longer tails are an adaptation to early arrival on the breeding grounds. Significance statement: The barn swallow is a socially monogamous passerine with extensive extrapair mating. We found that males become more successful in siring both withinpair and extrapair offspring as they become older. Their increased fertilization success was associated with a higher reproductive effort as indicated by larger testes, more motile sperm, and an earlier start of breeding in spring. The length of the outer tail feathers increased with age in both sexes, but long tails did not enhance male fertilization success among males of the same age. Long tails are probably an adaptation to rapid migration and earlier arrival on the breeding grounds. Our findings suggest that the commonly observed age-related increase in male fertilization success in passerine birds is better explained by life history theory than by sexual selection theory. Supplementary Information: The online version contains supplementary material available at 10.1007/s00265-022-03170-0.

9.
Cells ; 11(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-35053349

ABSTRACT

Sperm competition is thought to impose strong selection on males to produce competitive ejaculates to outcompete rival males under competitive mating conditions. Our understanding of how different sperm traits influence fertilization success, however, remains limited, especially in wild populations. Recent literature highlights the importance of incorporating multiple ejaculate traits and pre-copulatory sexually selected traits in analyses aimed at understanding how selection acts on sperm traits. However, variation in a male's ability to gain fertilization success may also depend upon a range of social and ecological factors that determine the opportunity for mating events both within and outside of the social pair-bond. Here, we test for an effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success. We found that sperm number (i.e., cloacal protuberance volume), but not sperm morphology, was associated with reproductive success in male red-backed fairy-wrens. Most notably, males with large numbers of sperm available for copulation achieved greater within-pair paternity success. Our results suggest that males use large sperm numbers as a defensive strategy to guard within-pair paternity success in a system where there is a high risk of sperm competition and female control of copulation. Finally, our work highlights the importance of accounting for socio-ecological factors that may influence male mating opportunities when examining the role of sperm traits in determining male reproductive success.


Subject(s)
Animals, Wild/physiology , Passeriformes/physiology , Sperm Count , Animals , Animals, Wild/genetics , Cloaca , Female , Humans , Male , Models, Biological , Passeriformes/genetics , Phenotype , Spermatozoa/cytology
10.
Ecol Evol ; 11(14): 9489-9497, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306637

ABSTRACT

The saltmarsh sparrow Ammospiza caudacuta and Nelson's sparrow A. nelsoni differ in ecological niche, mating behavior, and plumage, but they hybridize where their breeding distributions overlap. In this advanced hybrid zone, past interbreeding and current backcrossing result in substantial genomic introgression in both directions, although few hybrids are currently produced in most locations. However, because both species are nonterritorial and have only brief male-female interactions, it is difficult to determine to what extent assortative mating explains the low frequency of hybrid offspring. Since females often copulate with multiple males, a role of sperm as a postcopulatory prezygotic barrier appears plausible. Here, we show that sperm length differs between the two species in the hybrid zone, with low among-male variation consistent with strong postcopulatory sexual selection on sperm cells. We hypothesize that divergence in sperm length may constitute a reproductive barrier between species, as sperm length co-evolves with the size of specialized female sperm storage tubules. Sperm does not appear to act as a postzygotic barrier, as sperm from hybrids was unexceptional.

11.
Cells ; 10(6)2021 05 31.
Article in English | MEDLINE | ID: mdl-34073133

ABSTRACT

Sperm swimming performance affects male fertilization success, particularly in species with high sperm competition. Understanding how sperm morphology impacts swimming performance is therefore important. Sperm swimming speed is hypothesized to increase with total sperm length, relative flagellum length (with the flagellum generating forward thrust), and relative midpiece length (as the midpiece contains the mitochondria). We tested these hypotheses and tested for divergence in sperm traits in five island populations of Canary Islands chiffchaff (Phylloscopus canariensis). We confirmed incipient mitochondrial DNA differentiation between Gran Canaria and the other islands. Sperm swimming speed correlated negatively with total sperm length, did not correlate with relative flagellum length, and correlated negatively with relative midpiece length (for Gran Canaria only). The proportion of motile cells increased with relative flagellum length on Gran Canaria only. Sperm morphology was similar across islands. We thus add to a growing number of studies on passerine birds that do not support sperm morphology-swimming speed hypotheses. We suggest that the swimming mechanics of passerine sperm are sufficiently different from mammalian sperm that predictions from mammalian hydrodynamic models should no longer be applied for this taxon. While both sperm morphology and sperm swimming speed are likely under selection in passerines, the relationship between them requires further elucidation.


Subject(s)
Passeriformes/metabolism , Phenotype , Sperm Motility/physiology , Spermatozoa/cytology , Animals , Male , Mammals/metabolism , Passeriformes/anatomy & histology , Phylogeny , Spain
12.
Zoology (Jena) ; 140: 125770, 2020 06.
Article in English | MEDLINE | ID: mdl-32298992

ABSTRACT

Sperm cells vary tremendously in size and shape across the animal kingdom. In songbirds (Aves: Passeri), sperm have a characteristic helical form but vary considerably in size. Most of our knowledge about sperm morphology in this group stems from studies of species in the Northern temperate zone, while little is known about the numerous species in the tropics. Here we examined sperm size in 125 Afrotropical songbird species with emphasis on the length of the major structural components (head, midpiece, flagellum), and total sperm length measured using light microscopy. Mean total sperm length varied from 51 µm to 212 µm across species. Those belonging to the Corvoidea superfamily had relatively short sperm with a small midpiece, while those of the three major Passeridan superfamilies Passeroidea, Muscicapoidea and Sylvioidea showed large interspecific variation in total sperm length and associated variation in midpiece length. These patterns are consistent with previous findings for temperate species in the same major clades. A comparative analysis with songbird species from the Northern temperate zone (N = 139) showed large overlap in sperm length ranges although certain temperate families (e.g. Parulidae, Emberizidae) typically have long sperm and certain Afrotropical families (e.g. Cisticolidae, Estrildidae) have relatively short sperm. Afrotropical and temperate species belonging to the same families showed no consistent contrasts in sperm length. Sperm length variation among Afrotropical and Northern temperate songbirds exhibits a strong phylogenetic signal with little or no evidence for any directional latitudinal effect among closely related taxa.


Subject(s)
Adaptation, Physiological , Phylogeny , Songbirds/physiology , Spermatozoa/cytology , Tropical Climate , Animals , Cameroon , Male , Nigeria , Songbirds/genetics , Species Specificity
13.
PeerJ ; 7: e7988, 2019.
Article in English | MEDLINE | ID: mdl-31720113

ABSTRACT

In recent years, the field of sexual selection has exploded, with advances in theoretical and empirical research complementing each other in exciting ways. This perspective piece is the product of a "stock-taking" workshop on sexual selection and sexual conflict. Our aim is to identify and deliberate on outstanding questions and to stimulate discussion rather than provide a comprehensive overview of the entire field. These questions are organized into four thematic sections we deem essential to the field. First we focus on the evolution of mate choice and mating systems. Variation in mate quality can generate both competition and choice in the opposite sex, with implications for the evolution of mating systems. Limitations on mate choice may dictate the importance of direct vs. indirect benefits in mating decisions and consequently, mating systems, especially with regard to polyandry. Second, we focus on how sender and receiver mechanisms shape signal design. Mediation of honest signal content likely depends on integration of temporally variable social and physiological costs that are challenging to measure. We view the neuroethology of sensory and cognitive receiver biases as the main key to signal form and the 'aesthetic sense' proposed by Darwin. Since a receiver bias is sufficient to both initiate and drive ornament or armament exaggeration, without a genetically correlated or even coevolving receiver, this may be the appropriate 'null model' of sexual selection. Thirdly, we focus on the genetic architecture of sexually selected traits. Despite advances in modern molecular techniques, the number and identity of genes underlying performance, display and secondary sexual traits remains largely unknown. In-depth investigations into the genetic basis of sexual dimorphism in the context of long-term field studies will reveal constraints and trajectories of sexually selected trait evolution. Finally, we focus on sexual selection and conflict as drivers of speciation. Population divergence and speciation are often influenced by an interplay between sexual and natural selection. The extent to which sexual selection promotes or counteracts population divergence may vary depending on the genetic architecture of traits as well as the covariance between mating competition and local adaptation. Additionally, post-copulatory processes, such as selection against heterospecific sperm, may influence the importance of sexual selection in speciation. We propose that efforts to resolve these four themes can catalyze conceptual progress in the field of sexual selection, and we offer potential avenues of research to advance this progress.

14.
Elife ; 82019 11 26.
Article in English | MEDLINE | ID: mdl-31767056

ABSTRACT

The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.


Subject(s)
Charadriiformes/genetics , DNA, Ancient/analysis , Extinction, Biological , Population Dynamics , Animals , DNA, Mitochondrial , Genetic Variation , Genome, Mitochondrial/genetics , Humans , Phylogeny
15.
Mol Ecol ; 28(23): 5133-5144, 2019 12.
Article in English | MEDLINE | ID: mdl-31614034

ABSTRACT

Genes of the major histocompatibility complex (MHC) are essential in vertebrate adaptive immunity, and they are highly diverse and duplicated in many lineages. While it is widely established that pathogen-mediated selection maintains MHC diversity through balancing selection, the role of mate choice in shaping MHC diversity is debated. Here, we investigate female mating preferences for MHC class II (MHCII) in the bluethroat (Luscinia svecica), a passerine bird with high levels of extra-pair paternity and extremely duplicated MHCII. We genotyped family samples with mixed brood paternity and categorized their MHCII alleles according to their functional properties in peptide binding. Our results strongly indicate that females select extra-pair males in a nonrandom, self-matching manner that provides offspring with an allelic repertoire size closer to the population mean, as compared to offspring sired by the social male. This is consistent with a compatible genes model for extra-pair mate choice where the optimal allelic diversity is intermediate, not maximal. This golden mean presumably reflects a trade-off between maximizing pathogen recognition benefits and minimizing autoimmunity costs. Our study exemplifies how mate choice can reduce the population variance in individual MHC diversity and exert strong stabilizing selection on the trait. It also supports the hypothesis that extra-pair mating is adaptive through altered genetic constitution in offspring.


Subject(s)
Major Histocompatibility Complex/genetics , Mating Preference, Animal , Passeriformes/genetics , Reproduction/genetics , Alleles , Animals , Genes, MHC Class II/genetics , Genetic Variation/genetics , Genotype , Passeriformes/physiology , Sexual Behavior, Animal
16.
BMC Evol Biol ; 19(1): 169, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31412767

ABSTRACT

BACKGROUND: Female promiscuity is highly variable among birds, and particularly among songbirds. Comparative work has identified several patterns of covariation with social, sexual, ecological and life history traits. However, it is unclear whether these patterns reflect causes or consequences of female promiscuity, or if they are byproducts of some unknown evolutionary drivers. Moreover, factors that explain promiscuity at the deep nodes in the phylogenetic tree may be different from those important at the tips, i.e. among closely related species. Here we examine the relationships between female promiscuity and a broad set of predictor variables in a comprehensive data set (N = 202 species) of Passerides songbirds, which is a highly diversified infraorder of the Passeriformes exhibiting significant variation in female promiscuity. RESULTS: Female promiscuity was highly variable in all major clades of the Passerides phylogeny and also among closely related species. We found several significant associations with female promiscuity, albeit with fairly small effect sizes (all R2 ≤ 0.08). More promiscuous species had: 1) less male parental care, particularly during the early stages of the nesting cycle (nest building and incubation), 2) more short-term pair bonds, 3) greater degree of sexual dichromatism, primarily because females were drabber, 4) more migratory behaviour, and 5) stronger pre-mating sexual selection. In a multivariate model, however, the effect of sexual selection disappeared, while the other four variables showed additive effects and together explained about 16% of the total variance in female promiscuity. Female promiscuity showed no relationship with body size, life history variation, latitude or cooperative breeding. CONCLUSIONS: We found that multiple traits were associated with female promiscuity, but these associations were generally weak. Some traits, such as reduced parental care in males and more cryptic plumage in females, might even be responses to, rather than causes of, variation in female promiscuity. Hence, the high variation in female promiscuity among Passerides species remains enigmatic. Female promiscuity seems to be a rapidly evolving trait that often diverges between species with similar ecologies and breeding systems. A future challenge is therefore to understand what drives within-lineage variation in female promiscuity over microevolutionary time scales.


Subject(s)
Biological Evolution , Sexual Behavior, Animal , Songbirds/genetics , Animals , Body Size , Breeding , Ecology , Female , Male , Pair Bond , Phylogeny , Songbirds/physiology
17.
J Evol Biol ; 32(7): 666-674, 2019 07.
Article in English | MEDLINE | ID: mdl-30945783

ABSTRACT

Sperm morphology varies enormously across the animal kingdom. Whilst knowledge of the factors that drive the evolution of interspecific variation in sperm morphology is accumulating, we currently have little understanding of factors that may constrain evolutionary change in sperm traits. We investigated whether susceptibility to sperm abnormalities could represent such a constraint in songbirds, a group characterized by a distinctive helical sperm head shape. Specifically, using 36 songbird species and data from light and scanning electron microscopy, we examined among-species correlations between the occurrence of sperm head abnormalities and sperm morphology, as well as the correlation between sperm head abnormalities and two indicators of sperm competition. We found that species with more helically shaped sperm heads (i.e., a wider helical membrane and more pronounced cell waveform) had a higher percentage of abnormal sperm heads than species with less helical sperm (i.e., relatively straight sperm) and that sperm head traits were better predictors of head abnormalities than total sperm length. In contrast, there was no correlation between sperm abnormalities and the level of sperm competition. Given that songbird species with more pronounced helical sperm have higher average sperm swimming speed, our results suggest an evolutionary trade-off between sperm performance and the structural integrity of the sperm head. As such, susceptibility to morphological abnormalities may constrain the evolution of helical sperm morphology in songbirds.


Subject(s)
Biological Evolution , Songbirds/physiology , Sperm Head/physiology , Animals , Male , Sperm Motility/physiology
18.
Mol Ecol ; 27(13): 2871-2883, 2018 07.
Article in English | MEDLINE | ID: mdl-29772096

ABSTRACT

Positive selection acting on Toll-like receptors (TLRs) has been recently investigated to reveal evolutionary mechanisms of host-pathogen molecular co-adaptation. Much of this research, however, has focused mainly on the identification of sites predicted to be under positive selection, bringing little insight into the functional differences and similarities among species and a limited understanding of convergent evolution in the innate immune molecules. In this study, we provide evidence of phenotypic variability in the avian TLR4 ligand-binding region (LBR), the direct interface between host and pathogen molecular structures. We show that 55 passerine species vary substantially in the distribution of electrostatic potential on the surface of the receptor, and based on these distinct patterns, we identified four species clusters. Seven of the 34 evolutionarily nonconservative and positively selected residues correspond topologically to sites previously identified as being important for lipopolysaccharide, lipid IVa or MD-2 binding. Five of these positions codetermine the identity of the charge clusters. Groups of species that host-related communities of pathogens were predicted to cluster based on their TLR4 LBR charge. Despite some evidence for convergence among taxa, there were no clear associations between the TLR4 LBR charge distribution and any of the general ecological characteristics compared (migration, latitudinal distribution and diet). Closely related species, however, mostly belonged to the same surface charge cluster indicating that phylogenetic constraints are key determinants shaping TLR4 adaptive evolution. Our results suggest that host innate immune evolution is consistent with Fahrenholz's rule on the cospeciation of hosts and their parasites.


Subject(s)
Evolution, Molecular , Host-Pathogen Interactions/genetics , Selection, Genetic , Toll-Like Receptor 4/genetics , Animals , Birds/genetics , Birds/parasitology , Glycolipids/chemistry , Glycolipids/genetics , Immunity, Innate/genetics , Ligands , Lipid A/analogs & derivatives , Lipid A/chemistry , Lipid A/genetics , Lipopolysaccharides/chemistry , Lipopolysaccharides/genetics , Lymphocyte Antigen 96/chemistry , Lymphocyte Antigen 96/genetics , Microbiota/genetics , Models, Molecular , Protein Binding , Protein Conformation , Selection, Genetic/genetics , Sequence Analysis, DNA , Static Electricity , Toll-Like Receptor 4/chemistry
19.
Ecol Evol ; 8(3): 1680-1692, 2018 02.
Article in English | MEDLINE | ID: mdl-29435243

ABSTRACT

Genotyping of classical major histocompatibility complex (MHC) genes is challenging when they are hypervariable and occur in multiple copies. In this study, we used several different approaches to genotype the moderately variable MHC class I exon 3 (MHCIe3) and the highly polymorphic MHC class II exon 2 (MHCIIße2) in the bluethroat (Luscinia svecica). Two family groups (eight individuals) were sequenced in replicates at both markers using Ion Torrent technology with both a single- and a dual-indexed primer structure. Additionally, MHCIIße2 was sequenced on Illumina MiSeq. Allele calling was conducted by modifications of the pipeline developed by Sommer et al. (BMC Genomics, 14, 2013, 542) and the software AmpliSAS. While the different genotyping strategies gave largely consistent results for MHCIe3, with a maximum of eight alleles per individual, MHCIIße2 was remarkably complex with a maximum of 56 MHCIIße2 alleles called for one individual. Each genotyping strategy detected on average 50%-82% of all MHCIIße2 alleles per individual, but dropouts were largely allele-specific and consistent within families for each strategy. The discrepancies among approaches indicate PCR biases caused by the platform-specific primer tails. Further, AmpliSAS called fewer alleles than the modified Sommer pipeline. Our results demonstrate that allelic dropout is a significant problem when genotyping the hypervariable MHCIIße2. As these genotyping errors are largely nonrandom and method-specific, we caution against comparing genotypes across different genotyping strategies. Nevertheless, we conclude that high-throughput approaches provide a major advance in the challenging task of genotyping hypervariable MHC loci, even though they may not reveal the complete allelic repertoire.

20.
PLoS One ; 12(8): e0182446, 2017.
Article in English | MEDLINE | ID: mdl-28783753

ABSTRACT

Telomere length is related to aging in many eukaryotes and the rate of telomere attrition has been suggested to reflect individual genetic quality. Telomere length could thus have implications for mate choice. We investigated telomere length variation in bluethroat Luscinia svecica families with mixed paternity, including social parents, extra-pair fathers and nestlings, testing whether telomere length is associated with social and/or extra-pair mate choice through assortative mating or selection of mates with relatively long telomeres. In adults, relative telomere length (rTL) did not differ between the sexes, nor between two age categories. In chicks, however, rTL decreased with body mass at sampling (an index of nestling age). We found a positive correlation between the rTL of social mates, suggesting assortative mating with respect to telomere length or a correlative thereof. However, extra-pair males did not differ from social mates in rTL, and accordingly there was also no difference between within- and extra-pair young (i.e. half-siblings) when controlling for the effect of mass. We found no relationships between telomere length, age and fitness-related traits in adults, but an intriguing year-difference in telomere length in both sexes. In conclusion, we found no support for the idea that females choose extra-pair males based on their telomere length, but social mate choice seems to be influenced by rTL, possibly through its co-variation with aspects reflecting individual quality, like early arrival at the breeding grounds.


Subject(s)
Paternity , Sexual Behavior, Animal , Songbirds/genetics , Telomere/genetics , Animals , Female , Male , Reproduction/genetics , Songbirds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...